The Work Experience Details Report

Jacques A. Granadino, M.Eng., P.Eng.
Associate Director, Internship & Licensing
Accumulation of Valid Experience

Work Experience, in the discipline of education, is an essential element in determining whether or not an individual is acceptable for professional registration.
Acceptable Engineering work experience:

1. Application of Theory
2. Practical Experience
3. Management of Engineering
4. Communication Skills
5. Social Implications of Engineering
6. Sustainability
7. Sponsorship
8. Experience in a Canadian Environment
The Route to P.Eng. & P.Geo.

1. Education
 a. Examinations or
 b. Have Accredited Bachelors Degree or ‘Equivalent’

2. 4 Years Satisfactory Experience under Professional Supervision
 a. Experience, Training and Development
 b. 1 year in ‘Canadian Environment’

3. Law & Ethics
 a. Seminar and
 b. Professional Practice Examination

4. Good Character
The Route to Provisional Member (ITE)

“Provisional Members” will have:

1. Demonstrated academic qualification through an interview or academic examination(s);
2. Have 4 or more years of engineering or geoscience experience abroad reviewed and approved by APEGBC;
3. Canadian citizenship or PR status;
4. Completed the Law & Ethics requirement;
5. Passed the Professional Practice Examination

ITE = Internationally Trained Engineer
One Year in a ‘Canadian Environment’

- Normally in Canada or
- **Outside Canada** - may be credited, when it can be demonstrated that certain requirements are met:
‘Canadian Environment’

Required Elements:

- Canadian or *Equivalent to Canadian*
- Professional Supervision
- Laws
- Climate
- Codes
- Conditions
- Customs
- Practices and Standards
Professional Supervision & References

References are ideally P.Eng., P.Geo.,

OR other country equivalent, e.g.

- C.Eng.
- P.E.
- Pr.Eng.
- PE/IMF/APEC Engineer
- Eur. Ing.
- C.P. Eng
- Cedula profesional
- P.Eng. (IEI)
Acceptable *Engineering* work experience must include:

1. Application of Theory
2. Practical Experience
3. Management of Engineering
4. Communication Skills
5. Social Implications of Engineering
6. Sustainability
7. Sponsorship
8. Experience in a Canadian Environment
1. Application of Engineering Theory

Meaningful participation required in:

- Analysis
- Design & Synthesis
- Testing Methods
- Implementation Methods
2. Practical Engineering Experience

- Work originated by you and not solely in review of work of others
- Practical Limitations of Systems; Methods
- Local Conditions, Risks
- Site Visits; Site Meetings; Fieldwork (sampling, inspection, supervision)
- Commissioning
- Significance of time in engineering process
3. Management of Engineering

- Planning from conception through implementation
- Contract Management
- Project Management and Control
- Budgeting and Resource & Cost Monitoring
- Supervision; Leadership
- Risk Analysis
4. Communication Skills

- Reports, Correspondence; Record Keeping
- Briefing Notes
- Submissions to Government
- Training of Personnel; Training Guides
- Proposals (Contract; Economic)
- Oral Reports; Public Presentations; Management of Public Process
5. Social Implications

- Value, Benefits, Risk to Public
- Interest and Involvement in social implications
- Safeguards and mitigation
- Role of the Professional Regulatory Body
- Health & Safety
6. Sustainability

• Basic awareness of sustainability
• Awareness of sustainability clauses added to practice guidelines
• Sustainability principles to be applied in one’s work
• Expansion of sustainability concepts in society
7. Sponsorship

- 4 or more Canadian or U.S. professional engineering references:
 - At least 2 directly supervised candidate & in same discipline as candidate
 - At least 1 outside company
- For experience outside Canada/U.S. also required
- Professional engineer colleagues may be nominated but not in lieu of the above
8. Experience in a Canadian Environment

Applicants must demonstrate that it is:

- Supported by undergraduate and/or postgraduate academic formation
- Supported by a minimum of 2 Canadian and/or U.S. PE referees
- Broad-based and at the level of complexity and responsibility demonstrating progression towards readiness for professional registration
Special Requirements Specific to Discipline:

Specific to Discipline:

- Software Engineering
- Naval Architectural Engineering
- Environmental Engineering
- Forest Engineering (New)
- Computer Engineering
- Marine engineering
- Integrated Engineering

Check website!
What does not count

- Unsupervised work
- Work unsupported by academics
- No application of theory
What does not count

- No evidence of follow through from concept to implementation
- Work only in review of others’ work
- No progression of responsibility
- Technologists work
What does not count

- Insufficient understanding of personal/professional limitations
- Pure science, not applied science
- Repetition, cookbook engineering
Presentation of Experience for Review

- In a chronological format (include month/year)
- Describe in detail ALL what you did
- What, when, where, how, with whom, under whom, how big, how much
- Problems, solutions
Presentation of Experience

- **Record:**
 - project titles, dates
 - company’s name and dates there
 - supervisor’s name/title

- **Give a description of the work you did.**
 - Including details of your responsibilities
 - Typical projects and your role
Presentation of Experience

Include:

- methods, resources, standards and codes upon which you relied to carry out the work;
- supervision you provided (if any);
- New knowledge gained (courses, seminars formal & informal)
Format

- Clearly formatted & presented
- Sufficient detail to give a clear picture to the reviewer of your competence

Include:
- CPD, training
- Other professional designations
- Professional, community service
- Papers, publications
Examples

Investigations indicated hydrocarbon contamination was present in soil and remediation was necessary. I oversaw the remedial excavation completed to remove impacted soil from the site.

- **Responsibilities included:** managing contractors at site during excavation activities; communication with contractors, clients (site owners), senior URS staff; and interpretation of field and analytical data.

Marcel - Project Lead

- Assisted in the pilot testing of an in-situ remediation system as well as the installation and operation of the full scale system. The site is currently a shopping mall complex in Nanaimo that has been impacted by historical and/or currently operating adjacent fuel service stations. Gasoline had spilled from underground storage tanks at one or more of the stations into the underlying aquifer and formed a large free-phase hydrocarbon plume. The plume was situated at approximately 11 metres below grade and had spread across several properties including beneath a busy roadway.

- A detailed site investigation was completed on the site (not the neighbouring properties) to characterise the soil stratigraphy and groundwater flow as well as characterise and delineate the contamination. A report was then prepared detailing our findings and evaluating various remediation options, both in-situ and ex-situ. Based on the volume and depth of contamination, the stratigraphy, the groundwater flow, costs, timeframe, accessibility, etc., a combined free-phase product ‘flushing’ and vapour extraction system was selected as the preferred method of remediation. The objective of this type of dual system is to ‘flush’ free product from the top of the water table in conjunction with the extraction of volatilized contaminants.

- To assess the system’s effectiveness for site conditions, a short-term pilot test was conducted in April. The pilot test consisted of installing a single extraction well into which both the ‘flushing’ pump and extraction pump were situated as well as several normal monitoring wells at various distances from the extraction well to measure the radial effectiveness of the system. The results of the pilot test indicated a full scale system would be very effective in remediating the contamination in-situ. As such, a full-scale system consisting of three extraction wells was designed and installed in July.

- The system has been in operation since that time and remediation has been largely successful although it has been limited by the ongoing presence of the contamination source.

- Recently, a joint monthly monitoring and sampling program between the consultants (five in total) of the various parties has been initiated. Biweekly monitoring is completed and the readings/measurements are assessed to ensure the system is performing as expected.

- **Responsibilities included:** review and analysis of previous environmental work completed at the site and neighbouring sites; managing and conducting field activities during all stages of the project; communication with drilling, laboratory and remedial system contractors, clients (site owners), regulators (municipal, regional and provincial), senior and junior URS staff; coordinating of drilling, pilot test and full-scale system operations and maintenance; interpretation of field and analytical data; reporting to clients/regulators regarding remedial system; coordination of multi-consultant monitoring and sampling program.
Examples

WORK EXPERIENCE PROJECT SHEETS

CLIENT
Ministry of Transportation
LannyCoding, P.Eng., CDPWST
200-343 Kelway Street
Golden, BC
Telephone: (250) 953-4949
Fax: (250) 953-4975

PROJECT
Yoho Bridge and Approaches - Kicking Horse Canyon, Golden, BC

SERVICES
Alternative alignment assessment and costing; highway design; realignment; bridge replacement

YEAR
2005/2006

PROJECT DESCRIPTION: The Yoho Bridge and Approaches Project is located approximately 7 km east of the Town of Golden where the Trans-Canada Highway (TCH) crosses the CP railway line and the Kicking Horse River. This segment of the TCH is acknowledged to be the most difficult terrain along the entire Cache Creek to Alberta corridor. The project involves design for the realignment and replacing to four lanes of approximately 3.4 km of the TCH and for the replacement of the existing Yoho (5 Mile) Bridge.

The Design Team is headed by Urban Systems Ltd., as Project Manager and Highway Design Engineer, and is supported by Sandwell Engineering Inc. as Structural Engineer for the steel bridge option, Rhyol Projects Ltd. as Structural Engineer for the concrete bridge option, Golden Associates Ltd. as geotechnical Engineer for the structural foundation design, PDC Region 3 as Geotechnical Engineer for the highway approaches, and Northwest Hydraulic Consultants Ltd. as River Hydraulics Specialist.

RESPONSIBILITIES: [Blurred information]
was responsible for the preliminary and detailed design of the roadway. The design involved establishing the horizontal and vertical alignments. Design of cross sections, pavement markings, and signage. Additional responsibilities included the quantity take-offs, and construction cost estimates.

SUPERVISOR'S INFORMATION
Name of Supervisor: [Blurred information]
Supervisor's Bill name, company and telephone number. Please verify that the work activities recorded are accurate.

Name of Supervisor's Employer: [Blurred information]
Telephone: [Blurred information]
Signature of: [Blurred information]
Examples

WORK EXPERIENCE PROJECT SHEETS

CLIENT
Ministry of Transportation

YEAR
2000

PROJECT DESCRIPTION
Conceptual design of four interchanges for the City of Kelowna. The design included:

• Full diamond interchange at the intersection of Airport Way and Highway 97;
• Modified partial diamond interchange at the intersection of College Way and Highway 97;
• Partial cloverleaf interchange for the future Highway 97 and North End Connector travels.

APPLICATION OF THEORY:
• Conceptual interchange design (horizontal alignment, vertical alignment, and cross section design)
• Municipal road design – network roads
• Truck turning path calculations
• Structural design calculations

PRACTICAL EXPERIENCE:
• Site visit to review proposed interchange locations
• Use of AutoCAD 3.0 to evaluate truck turning paths
• Corridor evaluation to determine design criteria
• Understanding of basic travel use planning

MANAGEMENT OF ENGINEERING:
• Coordination of highway design (1 design technician)
• Coordination of drafting and drawing preparation (2 CAD technicians)
• Development of construction cost estimate
• Quality control reviewer

COMMUNICATION SKILLS:
• Design folder report
• Communication with subconsultants
• Communication with team members

SOCIAL IMPLICATIONS OF ENGINEERING:
• Understanding of land development and how it relates to transportation infrastructure

SUPERVISOR’S INFORMATION

<table>
<thead>
<tr>
<th>Name of Supervisor</th>
<th>Inc. of Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee Signature</td>
<td>Signature of Supervisor</td>
</tr>
</tbody>
</table>

Telephone: [Redacted]

Date: [Redacted]
Examples

- Leads take off
- Design of concrete slabs, beams and columns
- Design of concrete moment frames
- Design of related connections
- Design of concrete pile footings and pile caps.
- Finishing the design drawings
- Coordinate with architect
- Contact with contractor and address issues during construction stage
- Supervision of on-site construction

- No. 2 Zhuyi Yuan Road, Shuihu Town, Taishan Guangdong, P. R. China

Project Description:

The facility is a seven-storey building with total floor area of about 4000 square meters. The floor and roof structure are constructed of cast-in-place concrete slabs supported on concrete beams, which in turn are supported by concrete columns. The lateral stability of the building is provided by a system of concrete moment frame. The building is supported on conventional concrete pile footings.

My major duties:
- Leads take off
- Design of concrete slabs, beams and columns
- Design of concrete moment frames
- Design of related connections
- Design of concrete pile footings
- Finishing the design drawings
- Coordinate with architect
- Contact with contractor and address issues during construction stage
- Supervision of on-site construction

- No. 1 Zhuyi Yuan Road, Shuihu Town, Taishan Guangdong, P. R. China

Project Description:

The facility is a seven-storey building with total floor area of about 1600 square meters. The floor and roof structure are constructed of cast-in-place concrete slabs supported on concrete beams, which in turn are supported by concrete columns. The lateral stability of the building is provided by a system of concrete moment frame. The building is supported on conventional concrete pile footings.

My major duties:
Examples

- March 2004, "Seismic Post-disaster Inspection of Buildings: ATC-29"
- March 2004, Wood Solution Fair
- March 2004, "Precast Prestressed Hollowcore Slab"
- September 2004, Law and Ethics Seminar
- October 2004, "Design of Structural Elements for Fire Protection"

McGill University, Montreal, Q.C.
Position: Graduate Student and Research Assistant
Supervisor: Prof. [Name], Ph.D., P. Eng.
My accomplishment:
- Finish Master degree course requirements
- Finish Master thesis on "Cyclic Performance of Steel Stud Shear Wall"
- Publish a paper of "Preliminary R-Values for Seismic Design of Steel Stud Shear Walls" on Sixteenth International Specialty Conference on Cold-Formed Steel Structures in Orlando, Florida USA

3) August 2006 – June 2007
Taishan No.1 Architectural Design Institute, Guangdong, P. R. of China
Position: Structural Design Engineer
Supervisor: Zhaojin Yang

Major Projects
- Office and Residential building of the Jiangfu District, Dajiang Town, Taishan Guangdong, P. R. China

Project Description:
The facility is a seven-storey building with total floor area of about 3500 square meters. The floor and roof structures are constructed of cast-in-place concrete slab supported on concrete beams, which in turn are supported by
Examples

- Analysis document
- Feature and Design Change document
- Application/System Integration Test Plan document
- Bench testing of nATS with date changed to year 2005.
- Responsible for inter-operability testing of DSSII and PDMX-ENEM (AM120-UNEM).
- Prepared for the inter-op tests by working on the older version of EMS (NMC3909).
- Familiarized and trained on the live AM120 node and NMC3000.
- Prepared documents for PDMX-ENEM inter-operability testing.
- Setup machine for the installation of ENEM software.
- Responsible for installation, configuration and testing of ENEM software.
- Prepared for the internal Quality Audit.
- Ensured that all DSSII 4.1.3 project related documents/records were archived and in order.

Software Designer

Richmond, BC

Responsibility: Design Prime for Remote Inventory / Shelf Level Graphics feature
Project: TN4X MOA Release 3.1
Supervisor: [Redacted]

- Took over responsibility and ownership of the Remote Inventory and Shelf Level Graphics feature of the TN4X MOA.
- Familiarized and trained with the MOA architecture.
- Participated in the information and technology transfer sessions of the Remote Inventory and Shelf Level Graphics feature of the TN4X MOA.
- As the design prime for the Remote Inventory / Shelf Level Graphics feature, responsible for the following design documents:
 - Functional Description (FD)
 - Design Description (DD)
 - Designer Test (DT) plan
 - IVT Test Plan (TP) for the Remote Inventory/Shelf Level Graphics feature
 - Engineering Guidelines document
- Responsible for scheduling and conducting internal reviews of the above documents.
- Designed and implemented the Remote Inventory response file parser classes.
- Designed and implemented the TMAG Interface classes.
- Responsible for the TMAG interface regression testing activity.
- Prepared and submitted code inspection packages for review.
- Scheduled and conducted code review sessions.
- Modified code as per code review sessions and submitted to PLS.
- Responsible for coordinating the remote testing of SLG (from Newsouthgate, UK) and the MOA setup during designer testing phase.
- Responsible for end-to-end functionality testing of the Remote Inventory feature of the TN4X MOA with INM041.
- Reviewed the User Interface (UI) document for Shelf Level Graphics feature and provided comments.
- Participated in the Alarm History (AH) code review sessions.
Work Experience Report
Professional Engineer Application, APEGBC

August 2007 - April 2008

Employer: British Columbia, Canada

Position: Field Service Engineer, Regional Distribution Engineering
Supervisor: Team Leader, Regional Distribution Engineering

Project: Distribution Management System

We are jointly working on the purchasing of the State-of-Art Distribution Management System (DMS). The DMS Request for Proposal (RFP) document seeks detailed technical specifications and pricing for DMS to be implemented at the distribution control center and backup control center.

During previous project stage, eight DMS vendors were interviewed and their general DMS proposals were evaluated. Three out of eight vendors were selected for the RFP phase.

The DMS will provide centralized visibility and control of the distribution assets with an enhanced decision support capability that will assist in the day to day operations of the distribution system. The DMS will contribute the following value drivers: financial, environmental, reliability, employees, safety, all in alignment with the Long Term Goals.

I was assigned to the technical advisory group for DMS project due to my previous experience and involvement with development and implementation of DMS. This group consists of ten experts from different business groups.

My work is described in the following sequel:

- Reviewed Request for Qualification of each of eight vendors and prepared questions for vendors’ presentation and interview
- Participated in DMS vendors interview process
- Reviewed and advised on vendor proposals regarding advanced distribution application functions
- Participated in evaluation and scoring of DMS vendors; the primary responsibilities were related to the advanced distribution application functions: Optimal power flow, Volt-VAR optimization, Fault location, Isolation and Service Restoration
- Reviewed DMS functional specification as part of Request for Proposal and provided valuable inputs and additional requirements that DMS should have to meet requirements (e.g. suggested active role for dispersed generators in Voltage/VAR control, proposed additional advanced applications to be included in RFP)
- Participated in discussions with the various stakeholders from BC Hydro and BCTC with objective to collect supplementary requirements and prospects for DMS
- Assessed proposals and alignment with the requirements for each advanced distribution application functions
Work Experience Report
Professional Engineer Application, APEGBC

- Assessed the current Volt/VAR control implementation
- Organized and prepared sample data of one selected substation for DMS demonstration (GIS extract, additional supplement data, load profiles etc.)

Study project: Overhead line grounding alternatives to eliminate copper conductors accessible from the ground level

The main objective of the study was to review the current grounding practice for overhead lines and to assess feasible alternatives for copper. Copper theft is becoming an increasing problem as the demand for copper and the price of copper continues to climb in the Global Market. A similar problem can be seen worldwide. Grounding of the distribution system is extremely important from a technical and safety perspective. The study report is currently under review of the Senior management. The proposed alternative would greatly improve the safety and reliability of the distribution system and it is expected that theft would be significantly reduced since the profit incentive from short-scrap alternative wire is very low.

My work is described in the following sequel:

- Reviewed previous published report on initiatives related to replacement of copper conductors on overhead poles
- Reviewed and studied the current grounding practice and standards for overhead distribution lines
- Studied IEEE standards and recommendation for substation grounding practice, and recommended Utility practice of grounding overhead poles
- Assessed feasible alternatives for copper conductors and reviewed the fault current test results performed on selected alternative
- Discussed with other stakeholders (substation department, transmission department, protection and control etc.) within the company about the current grounding practice, expected fault levels in the distribution system, typical protection fault clearing time etc.
- Provided analytical conformation that replacement of copper grounding conductors would not significantly affect the grounding circuit of overhead lines, operation of protective relaying that is suitable for the available fault currents on the BC Hydro distribution system
- Developed a reference lookup charts and tables as a design guide for use of alternative wire
- Co-authored report that was presented to the Senior management; developed graphics to assist problem explanation

System Improvement Project: Substation reconfiguration work to connect the existing circuit to the new bus system after voltage conversion of the Hope substation

The existing substation is under upgrade. The HV transformers will be replaced and new 25 kV bus system will be installed. The existing 12 kV distribution bus system will be removed. It is required to reconfigure the existing circuits 1251 HOP, 1252 HOP and 2553 HOP and to connect them to the new bus system.

My work is described in the following sequel:
Visited site to familiarize with the existing circuits' configuration and to identify potential solutions for future circuits' connection to the new bus.

Communicated and discussed requirements with other stakeholders involved in this project: substation department, transmission department, and field operations (required safety clearances between distribution conductors and bus system, construction time coordination, position, and connection of neutral conductor to distribution circuits, etc.).

Detailed design for the connection of three circuits to the new bus system, that includes installation of new poles, disconnect switches and tie points, removal of the existing poles.

Reviewed and revised the design with Field operations and representative to meet necessary safety and operational requirements.

Prepared work order packages (design estimation and final design details, engineering instruction for construction and installation).

Prepared, reviewed, and approved construction drawings.

Prepared Project Specification and Invitation to Tender for external tenderers.

System Improvement Project: Two pad-mounted transformers on 1252 HOP circuit.

The 1252 HOP circuit is undergoing voltage conversion. This requires replacement of all equipment on the circuit that is voltage-dependent (conductors, transformers, insulators, etc.). The 1252 HOP circuit is a feeder with two very long laterals. For strategic reasons, the voltage conversion is divided into two stages, and two laterals are left out for the second stage of the voltage conversion. The laterals would remain at 12 kV after conversion, and in order to realize it, two step-down transformers of 2000 kVA would be installed.

My work is described in the following sequence:

Visited site, assessed and determined the best possible location for the installation of two concrete pads.

Prepared preliminary sketch and initial design and cost estimations.

Communicated and coordinated all necessary information to obtain the Ministry of Environment permit for the construction on Right of Way.

Detailed design engineering for installation of pad-mounted transformers, four terminal poles for connection, and all other required work, according to BC Hydro standards.

Visited and reviewed engineering design on-site with Field operations.

Prepared work order and construction drawings.

Communicated and coordinated construction of poles with Field operations and installation of concrete pads with the civil inspector.

System Improvement Project: Installation of a new 25F44 MLN feeder to offload two circuits from a substation.

A new duct bank will be constructed in the City of [redacted] to improve reliability of surrounding circuits and to offload some feeders. The duct bank will be constructed along one of main streets in the City of [redacted]. The new feeder will allow transfer of 190A from one and 40A from the other feeder. The duct bank will be long approximately 1.2 km with 5
manholes. It is estimated that about 2.3 km of 750 KCM cable would be needed from McLellan substation to terminal poles and additional 1.2 km for standby cable.

My work is described in the following sequel:

- Organized a meeting with Municipality and communicated the Project main idea and requirements. Discussed with Operation manager requirements that need to be met prior construction: the approval process, possible working hours, required traffic management plan and any special requirements from Municipality of the City of

- Organized site visit with environmental specialist and senior engineer. The main objective was to
 - Assess the possible route of duct bank, with the lowest impact on the traffic and the environment
 - Assess the possible use of the bridge over the river for the duct bank attachments
 - Assess the possible impacts on environment based on the proposed route for the duct bank

- Obtained necessary data about other utilities present on the proposed route: water, sewer, gas, telephone and others, everything that could be in proximity of electrical structure

- Estimated the number of necessary duct bank attachments and their weights for the bridge structure analysis

- Settled on and awarded external contractor for the bridge structural analyses. Met and reviewed with the external contractor requirements according standards

- Visited the bridge with contractor and evaluated anticipated solution for the duct bank attachments. Three solutions were proposed. The preferable solution would require the least additional work on the bridge reinforcement. Communicated proposed solution to Municipality and

- Organized meeting at Municipality premises to discuss objections and to find satisfy solution for all parties. As a result of discussion a new solution was identified.

- Analysed tensions in cables using cable pulling analysis program

System Improvement Project: Five distribution feeder crossings at CP railway

There are two parallel circuits along CP railway with transmission and distribution lines. The distribution circuit is underbuild on the south side of the railway. However, the existing 60 kV transmission circuit on south side was abandoned and north side was reconstructed. The reconstruction on transmission side included installation of steel poles. Due to technical reasons, distribution circuits cannot be underbuild on steel structure. In a view of that fact five crossings along CP railway have to be made to maintain distribution circuit on wooden poles.

My work is described in the following sequel:

- Visited site and assessed the preliminary design
- Communicated and coordinated survey requirements
Evaluated the stability of new poles and maximum forces present on the new poles between crossings. The original design proposed support guy attachments to steel poles across from distribution poles. This would require additional engineering from transmission department and likely set off additional costs to the distribution project. I have proposed the elimination of span guys and usage of higher poles. The higher poles would be set deeper in soil and with it their stability is increased. By this, the project cost can remain at estimated level and no additional delay is suppressed.

Designed in detail required anchors and guys at each pole. Ensured that the proposed location are within Right of Way and the standards are followed.

Reviewed and revised construction drawings and CP railway crossing drawings.

Besides these major projects I had various smaller assignments and initiatives. They are described in the following sequel:

For the project of new four feeders from Mt. Lehman substation I had participated in the meetings, visited site during construction, reviewed environmental management plan on site with environmental specialist and contractor, monitored duct bank excavation and manhole installations.

Assessed the area of interest of McLellan substation to perceive the potential ways of load transfer between feeders using software for analysis CYME DIST.

Prepared distribution reconfiguration plans to transfer load between the feeders.

Prepared work orders to add new elements or replace exiting one (adding the new switch, fuse and cutout replacements etc.).

Participated in team meetings.

On-site inspection with a senior engineer of the ELITE transformer installation. The transformer is a customer property but doesn’t meet necessary requirements for the primary connection.

Initiated and organized training for the team to access the real time data through the corporate PI historian system.
What Employers Tell Us They Want from Today’s Professional

- Excellent and specialized skills, depth of experience; hands-on skills
- Enthusiasm, ambition, intelligence, positive attitude, ability to ‘fit in’ and ‘come up to speed’ quickly
- Customer service, communications, business development skills
- Good English Language Skills
- Understanding of the Industry
- Willingness to relocate
- Outside confirmation of abilities (references, peer recommendation)
Questions?

- Register@apeg.bc.ca
- 604-412-4856
- 1-888-430-8035
- www.apeg.bc.ca